Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid

نویسندگان

  • S. Das
  • S. K. Guchhait
  • R. N. Jana
چکیده

Radiation effects on free convection MHD Couette flow of a viscous incompressible heat generating fluid confined between vertical plates have been studied. The governing equations are solved analytically using the Laplace transform technique. The variations of velocity and fluid temperature are presented graphically. It is observed that the velocity decreases with an increase in either magnetic parameter or radiation parameter or generation parameter or Prandtl number. It is also observed that the velocity increases with an increase in either Grashof number or time. An increase in either radiation parameter or Prandtl number leads to fall in the fluid temperature. It is seen that the fluid temperature increases with an increase in either heat generation parameter or time. Further, it is seen that the absolute value of shear stress at the moving plate increases with an increase in either magnetic parameter or radiation parameter while it decreases with an increase in either heat generation parameter or Prandtl number. The rate of heat transfer increases with an increase in either Prandtl number or heat generation parameter or time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system

Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...

متن کامل

Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling

The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...

متن کامل

A Study on free convective heat and mass transfer flow through a highly porous medium with radiation, chemical reaction and Soret effects

The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be gray, absorbing, and emitting but non-scattering medium, and Rosseland approximation is consid...

متن کامل

Heat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface

This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method...

متن کامل

Unsteady convective flow for MHD powell-eyring fluid over inclined permeable surface

The current article has investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similar trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012